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CELL VERTEX FINITE VOLUME DISCRETIZATIONS 
IN THREE DIMENSIONS 
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Oxford University Computing Laboratory. I 1  Keble Road, Oxford, OX1 3QD, U.K. 

SUMMARY 
The cell vertex method is generalized to three dimensions. It is proved that there exists a one-parameter 
family of eight-point three-dimensional methods with second-order truncation error on parallelepipeds. 
Using different triangulations of control volume faces, various finite volume methods are derived. Some of 
these are identified as members of the aforementioned one-parameter family and may be regarded as 
second-order upwind schemes. A Fourier analysis is used to investigate the spectral properties of these 
discretizations. 

Numerical experiments illustrate that second-order global accuracy is achieved on parallelepiped grids, as 
suggested by the theory. Randomly perturbed, stretched, sheared meshes are used to test these methods to 
destruction. It is found that upwinding improves both the accuracy on distorted meshes and the spectrum of 
the discretization. 

KEY WORDS Cell vertex Accuracy on parallelepipeds Triangulated control volumes 

1 .  INTRODUCTION 

The true nature of fluid flows past complex geometries can only be adequately represented by 
three-dimensional systems of partial differential equations. Because the size of the resulting 
algebraic systems can easily exhaust the memory of the largest computers, mesh refinement may 
be impractical and the accuracy of the underlying discretization is paramount. In addition, direct 
solvers for these systems are computationally infeasible and iterative techniques must be em- 
ployed. The convergence of these methods depends critically on the spectral properties of the 
underlying discretization. 

Cell vertex finite volume methods are becoming increasingly popular in applications to the 
Euler and Navier-Stokes equations in two dimensions. This is largely due to the experimental 
and theoretical evidence that such methods are significantly more accurate on non-uniform 
meshes than their cell-centred counterparts.' - 

This paper generalizes the cell vertex method to three dimensions. The resulting methods are 
applied to scalar conservation laws for which their accuracy and spectral properties are exam- 
ined, as a first step towards the treatment of non-linear hyperbolic systems. The paper begins with 
a brief review of the analysis of the one- and two-dimensional methods. By using different 
integration rules over the faces of hexahedral control volumes, various eight-point three-dimen- 
sional generalizations are derived. These are identified as members of a one-parameter family of 
cell vertex methods which have second-order truncation errors on parallelepiped meshes. Some 
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members of this family are shown to have more desirable spectral properties than others, 
although all admit spurious oscillatory solution modes. 

The global accuracy of these methods on non-uniform meshes is both confirmed and compared 
through numerical experiments with linear advection. Finally, by imposing a helical flow field, an 
upwind cell vertex discretization is introduced and shown to possess second-order accuracy. 

2. THE CELL VERTEX DISCRETIZATION IN ONE AND TWO DIMENSIONS 

Since this paper is concerned with the accurate discretization of spatial derivative terms, the 
following discussion is directed at systems of steady state conservation laws. However, its 
conclusions are equally applicable to time-dependent problems. 

Consider the steady conservation law 

V.F=O, (1) 
where F is a function of the solution q in one, two or three dimensions. The basic philosophy of 
the cell vertex finite volume method is to: 

(i) split the domain into non-overlapping convex control volumes; 
(ii) store approximate solutions at the vertices of these control volumes; 
(iii) integrate the equation over a typical control volume r and apply the divergence theorem, 

where n is a unit normal to r; a cell residual R is defined to be 

where Vis the volume of the cell r; by (2), setting R = 0 corresponds to solving (1) as V-r 0 
(iv) approximate R using some numerical integration rule around the control volume, thus 

giving a cell-based equation in terms of node-based unknowns; 
(v) set each individual cell residual to zero whilst imposing relevant boundary conditions. 

This produces a compact, conservative and accurate stencil, ideal for systems of conservation 
laws. 

In one dimension for linear advection 

aq, = 0, (4) 

for which F ( q )  = aq, the cell residual R is approximated over a two-point control volume as 

where {xi};= is a mesh with nodes x i  < x i +  bounding the control volumes and q i x q ( x i ) .  Let the 
discrete system of cell residuals and boundary conditions be written 

Lq = f. 

Denoting the vector of truncation errors by 7 and the global error by e, 

Le = 7, 
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Thus 
II e I1 6 II L- II II ? II. 

Given that the matrix L is stable, / I  L-' /I d c  for some constant c, the global error is of the same 
order as the truncation error and the sharpest bound is obtained by minimizing r. This is achieved 
when r is evaluated at the centre of the cell. It should be noted that if equation (4) included source 
terms, these should be evaluated at the same point as the truncation error. One of the paramount 
issues of this argument is the correct choice of norm. This is not addressed here; for a detailed 
discussion see Reference 4. 

It is trivial to show that equation (5) is the unique cell vertex discretization with second-order 
truncation error at the centre of the cell. The Fourier symbol for this stencil is 

for a uniform mesh with mesh spacing h. Since S(0)  vanishes only for O = O ,  this discretization 
admits no spurious oscillatory modes. A detailed description of the Fourier symbol is given in 
Section 3.1. Hence in one dimension the cell vertex method with second-order truncation error is 
unique, compact, conservative, admits no spurious oscillatory modes and suffers no loss of 
accuracy due to mesh distortion. 

In two dimensions the cell vertex method has been extensively applied to convex quadrilateral 
control volumes. In general, for a second-order truncation error the first six terms of the Taylor 
series need to be set to zero. Hence for a four-point stencil this accuracy is only achieved for 
quadrilaterals with special properties, such as parallelograms. The following existence and 
uniqueness theorem characterizes two-dimensional cell vertex methods for linear advection 

a q x  + bqy = 0, 
for which F(q)=(aq ,  bq)T. 

Theorem I 

There exists a unique four-point cell vertex method for linear advection in two dimensions with 

1. opposite coefficients of the stencil sum to zero; 
2. the stencil admits a spurious oscillatory solution mode. 

second-order truncation error on parallelograms. It has the following properties: 

Proof. Let the four-point discretization be written 
4 

a - v q x  2 uiqi, 
i =  1 

where a = (a, b)T is constant, {ai}:= are the stencil coefficients ordered as in Figure 1, qi x q(xi) is 
an approximate solution at the vertices xi and the centre of the parallelogram, xo, is defined as the 
average of these vertices. Expanding the first six terms in a Taylor series about x,, gives 

where Sxi=(6xi, S Y ~ ) ~ = X ~ - X ~ .  Let 
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Figure 1 .  Ordering of the nodes for a two-dimensional control volume 

Note that on a parallelogram 

Sxi= - S X ~ + ~ ,  i =  1,2. 

Assuming a - V q  = 0 in equation (7), a second-order truncation error is achieved provided that 

1' IT [i :)[?)=[$ a4 

where 0 = (0, 0)'. Introducing alternative variables 

results in 

where /3=(p1, BZ)T and y = ( y l ,  yz)T. Hence we require 

Ay=a  

and 
(9) 

The system (9) has a unique solution y for non-trivial parallelograms since det (A)= V/2,  where 
V is the volume of the parallelogram. The determinant of the first two rows of the matrix 
(IT, b', C)' is 

d =SxZSyz - Sx1Syl. (1 1) 

Without loss of generality the parallelogram may be oriented such that S y ,  =Syz and thus 
d =  V /2 .  Hence (IT, b', C)' is of rank two and /3=0 is the unique solution of (10). This proves 
existence and uniqueness and property 1 follows immediately from (8). 

Property 2 is proved by seeking solutions of the homogeneous equations of the form 
qij = 0; 05, 
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where qij is defined on some regular parallelogram ( i , j )  mesh. Substituting this into the stencil 
gives 

a, (1 - 0 1 0 2 )  + a2(01- 0,) = 0. (12) 

This has the solution 0 = ( 1 ,  l)', (- 1, - 1)'. The first of these solutions is the consistency 
0 

Through a finite volume formulation a cell vertex stencil may be derived as follows. In two 

condition whilst the second represents a high-frequency oscillatory solution mode. 

dimensions n = (dy, - dx)' and hence from (3) 

1 
R = hr (aqdy - bq dx). 

Approximating the line integral by the trapezium rule gives the four-point stencil 

1 
V R = - { [  a(x2-X4)-b(Y2-Y4)1(41-qq3)+Ca(x,-xl)-b(Y,-Y,)l(qz-q4)}. (13) 

This reduces to the unique method of the theorem for control volumes which are parallelograms. 
Much analysis has been performed on this In Reference 1 the cell vertex 
method is shown to maintain its order of accuracy under mesh stretching, unlike its cell-centred 
counterpart. In Reference 4 global second-order accuracy is proved and demonstrated if the 
points bisecting the diagonals of the quadrilateral control volume differ by less than O(h). 

The Fourier symbol2 of this stencil on a uniform mesh is given by 

9 

where 8=(61, eZ)TE(-n, .I2. This symbol vanishes in the case 

e = (71, n ) ~ .  

This represents a spurious oscillatory chequerboard mode which is undetected by the discret- 
ization. In addition, there is a characteristic mode where S ( e ) = O  which is normal to (a, b)' in the 
neighbourhood of the origin. These modes severely inhibit the convergence of any iterative solver; 
for further details see Reference 5. In summary, the method has a compact, conservative 
four-point stencil and is accurate on regular quadrilaterals. However, the Fourier symbol admits 
spurious oscillatory modes. 

3. CELL VERTEX DISCRETIZATIONS IN THREE DIMENSIONS 

In this paper eight-point cell vertex methods for three-dimensional conservation laws are 
examined. Consider the equation 

V * F = F ,  + G, + H, =0, 

where F = F(q) and q = q ( x )  with x = (x, y, z)'. From equation (3) 

where V is the volume of r. Consider a general hexahedral volume with planar faces as in 
Figure 2. On the face 1678 

nds=+6x6, A SxI8, 
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"t 

Figure 2. A general eight-point volume 

where axij = xi-- xj. Hence, using the midpoint rule to approximate the surface integral of (3), the 
cell residual is defined as 

+; (F, +Fz +F4+F7).f 8x74 A 6x12 +a (F, +F6 +F7 +F8)'3 8x67 A 6x18 
+a (F, +Fs  + F7 + F8)'f 8x57 A 8x82 +a (F3 + F5 + F ~ + F I ~ ) * +  8x56 A 8x381, (14) 

This is the discretization adopted in References 6 and 7. The integration rule is exact for linear 
functions only if the faces are planar parallelograms. Although the method may still be used if this 
is not the case, only constant functions can be integrated exactly. Thus one might expect the 
accuracy of this discretization to be severely diminished under mesh distortion. For the special 
case of the canonical cube [ - 1, lI3 this is the unique scheme which will integrate trilinear 
functions exactly. 

It would be a desirable property for the cell residual to be able to integrate linear functions 
exactly on any mesh, as is the case in one and two dimensions. This may be achieved by 
triangulating each face and then applying the midpoint rule over the two triangles on each face. 
Thus each triangle is planar and has a well-defined normal. The midpoint rule will always 
integrate linear functions exactly on any triangle. Clearly many triangulations are possible, one of 
which is illustrated in Figure 3. For this triangulation the cell residual is defined as 

1 
V 

+'j (F1+F7+F8)*$8X71 A 6Xgl+~(F1+F8+F6)*f6Xsl A 8x61 
+* (F4 +F1+ F6) * $  8x14 A 8x64 i - 4  (F4+ F6 F3) '$  8x64 A 8x34 
+i (F8 +F7 +F2)*f  6x78 A 6x28 +* (F8 +Fz+F5).f 6x28 A 8x58 

R x - [ $ ( F 3 + F 4 + F 5 ) - f 8 ~ 3 4  A ~ X , , + ~ ( F ~ + F ~ + F ~ ) . ~ S X ~ ~  A 8x24 

+ * ( F 4 + F 2 + F 7 ) . f 8 ~ 2 4  A ~ x ~ ~ + $ ( F ~ + F ~ + F ~ ) . ~ ~ x ~ ~  A 8x14 

+i(F8+Fs+F3)*4 6x58 A 8X38+'j(F~+F3+F6).36Xj~ A ~ X S S ] .  (15) 
Clearly there are many different combinations of triangulations. To illustrate this, the stencils of 
three types of discretizations for linear advection, F = (aq, bq, ~ q ) ~ ' ,  on a uniform mesh are 
presented in Figures 4-6. By inspection the triangulated discretizations could be interpreted as 
upwinding, i.e. choosing the integration rule to maxmize the coefficient of the upwind point. It is 
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Figure 3. A triangulation of a general eight-point volume 

-a-b+c 
4h 

-a-b-c 
X 

Figure 4. A cell vertex stencil on a uniform mesh where each face is assumed planar 

-2a-2b-2c 
X 6h 

51 1 

.a+b+c 
4h 

a+b-c 
‘4h 

,2a+2b+2c 
6h 

Figure 5. A cell vertex stencil on a uniform mesh with opposite faces triangulated identically 
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=P 2a+Zb+2c 
6h 

,- 

Figure 6. A cell vertex stencil on a uniform mesh with opposite faces triangulated in an opposite manner 

worth noting that for conservation throughout any mesh the triangulation of any face needs to be 
identical for adjacent cell residuals. 

It is clear that an eight-point stencil cannot have a second-order truncation error on an 
irregular mesh, since in general the first 10 terms of the Taylor series need to be set to zero. 
However, motivated by the cell vertex method in two dimensions, a second-order truncation 
error is sought on parallelepipeds. The following existence theorem characterizes such methods. 

Theorem 2 

There exists a one-parameter family of eight-point cell vertex methods for linear advection with 
second-order truncation error on parallelepipeds. Each member of the family has the following 
properties: 

1. opposite coefficients of the stencil sum to zero; 
2. the stencil admits spurious oscillatory solution modes. 

Pro#$ The eight-point discretization may be written 
8 

a . V q =  c Iqqi, 
i =  1 

where a=(a,  b, c)' is constant and {ai);= are the stencil coefficients ordered as in Figure 2. The 
centre of the parallelepiped, xo, is defined as 

A 

x,=Q 1 xi. 
i =  1 

Expanding the first 10 terms in the Taylor series about xo gives 
8 

6x2 6Y2 622 + - 4 x x  lx=xo + - q y y  Lo + - q z z  l x =  xo)9 2 2 2 



CELL VERTEX FINITE VOLUME DISCRETIZATIONS 513 

where 6xi=(6xi, 6yi, S Z ~ ) ~ = X ~ - X ~ .  Let 

6x1 6x2 6x3 8x4 
I = &  1, 1, 1)T, A =  6Yl 6Y2 6Y3 6Y4 9 

(821 6z2 623 6z4 1 
(6Xd2 (6x2)2 (8x3)2 (6x4)2 
(sY1)2 (sY2)2 (sY3)2 (8Y4)2 
(6Zd2 (W2 (823)2 (6z4)2 

6X16Yl 6X26Y2 8X36Y3 6X46Y4 

6Y16Zl 6Y26Z2 6Y36Z3 6Y46Z4 
B= 6X16Zl 6x26~2 6x36~3 S X ~ S Z ~  

6xi= - S X ~ + ~ ,  i =  1, . . . ,4. 

i 
On a parallelepiped 

Equating derivatives in equation (16) gives a second-order truncation error provided that 

c c  
where 0 = (0, 0, O)T. Changing variables to 

results in 
Pi=ai+ai+4 and y i = ~ i - ~ i + 4 ,  i = l ,  . . . ,4, 

where y = ( y l ,  . . . , y4)T and /3=(f11,. . . , f14)T. This decouples to 

Ay=a  

and 

(17) 

If the matrix (lT, B, C)T is of rank four than P = O  and property 1 follows immediately. In order to 
show this, it is advantageous to parametrize the parallelepiped, without any loss of generality, as 
in Figure7. The constants r , s  and t represent shear factors in the xz-, yz- and xy-planes 
respectively. With this parametrization the centre of the parallelepiped is given by 

xo = (XO, YO, zo)T = (h, + r + t ,  h, + s, h,)T 

and hence the relevant distances are 

6x1=hX-r-t, 6x2= - h , - r + t ,  6 ~ 3 =  -h,+r--t, 8x3 = h, - r - t ,  

Sy,= - h y - S ,  6y2 = h, - S, 6y3 = --h,+s, 6y3= - h y - S ,  

621 = - h,, 822 = - h,, 623 = h,, 623 = - h,. 
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Figure 7. The parametrization of a general parallelepiped 

Thus the first four rows of the matrix (IT, B, C)T may be written 

1 1 

(r  + t - h,)(h, + s) ( t  - h, - r)(h, - s )  
( I  + t - h,)h, (h,  + I - t)h,  i (h, + 4 h, (S-hhy)h, 

whose determinant is 

i 
1 1 

( I  - h, - t ) (s  - h,) (h,  + I + t)(h,  +s) 
( r  - h, - t)h,  ( h , + r + t ) h ,  

(s - h,) h, (h,+s)hz 

- 16h:h:hz= - V2/4, 

where V is the volume of the parallelepiped. Hence p = O  for all non-trivial volumes and 
property 1 follows. 

To show the existence of a one-parameter family, note that on a parallelepiped 
3 

6x4= c 6Xi 
i = l  

and define the triple scale product 

Given that P=O, then from (17) yi=2ai for i =  1, . . . ,4. Thus equation (18) may be written 

2(a16x1 +az6xz + a36x3 +a46x4)=a. 

2 [(al  + a4)dx1 +(az + a4)6x2 + (a3 + a4)6x3] =a. 

(22) 

(23) 

Thus, using equation (20), this becomes 

This is a 3 x 3  matrix system whose determinant is [6x1,6x2,6x3]; hence from (21) it is 
non-singular. Cramer's rule gives 

a3+a4= - ( l / V ) [ a ,  ax1, ax2]. (26) 
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Introducing a single parameter 4, a family of cell vertex discretizations with second-order 
truncation error on parallelepipeds can be described by defining 

a4=(1/4V)([a,6x1, 6x3]-[a, 6x1, 6x21-[a, 6x2, 6x31)+4= - a g .  

Using (24)-(26) and (22), 

a1 =(1/4V(Ca, 6x3, 6x41-Ca, 6x2, 6x41-[a, 8x2, Sx31)-4= - a 5 ,  

a2=(1/4V([a, 6x1, 6x3]+[a, 6x1, 6x4]-[a, 6~3 ,6x41) -4=  -a6, 

~3=(1/4V)(Ca, 6x2, 8x41-Ca9 6x2, 6x2]-[a, 6x1, 6x41)-4= -a7, 

for sufficiently small 4 to be discussed later. 

proved by seeking solutions of the homogeneous equations of the form 
It remains to show that all these stencils admit high-frequency oscillatory modes. This is 

4.. ijk - @ ; @ j , @ " ,  - 

where q i j k  defines some regular parallelepiped (i,j, k )  mesh. Substituting this into the stencil gives 

a 4 ( 1 - @ 1 @ 2 @ 3 ) + @ 1 ( @ 1 - 0 2 0 3 ) + a z ( 0 2 - 0 1 0 3 ) + C 1 3 ( 0 3 - 0 1 0 2 ) = 0 .  (27) 
All the terms in parentheses clearly go to zero for the consistency condition 0=(1, 1, l)T. 
However, they also vanish when 

(28) 
which represent high-frequency oscillatory modes undetected by the stencil. In addition, if 
0 = (- 1, - 1, - l)T then (27) becomes 

2(a4 - a1 -a2 -a3) = 44; (29) 

complete. 0 

0 = ( 1 ,  -1 ,  -1)T, ( -1 ,  1 ,  - l ) T ,  ( - 1 ,  - 1 ,  l)T, 

hence if 4=0, an extra oscillatory mode is introduced. Thus the proof of the theorem is 

The following general remarks are consequences of the theorem. 

1. The case 4=0 is equivalent to equation (14) on a parallelepiped. Furthermore, the 
triangulated discretization given in equation (1 5 )  is obtained for 

4=(1/2V)(-[a, 6x1, Jx21+Ca, 6x1, 6~31-Ca, 6 ~ 2 ~ 6 x 3 1 ) .  ( 3 0 )  
Hence these methods derived through the finite volume formulation have second-order 
truncation error. However, the triangulation given in Figure 6 is only of first order since 
BZO. In fact, for constant coefficient linear advection second-order accuracy can only be 
obtained if opposite faces are triangulated identically. 

2. A non-zero q5 is effectively adding a chequerboard into the stencil which on a uniform mesh 
approximates the mixed derivative term 4h3qxy,. To retain second-order accuracy, q5 must 
be O(h-') ,  which is the same order as the other terms in equation (14). The 4 given in 
equation (30) satisfies this constraint. The choice of non-zero q5 has a beneficial effect on the 
spectral properties of the discretization since fewer oscillatory modes are admitted. In two 
dimensions adding a chequerboard into the stencil has been studied in Reference 8 and is 
equivalent to a term 4h2qXy.  To retain a second-order truncation error, 4 has to be O(1), 
which is of lower order than the other terms in equation (13). Thus the beneficial effects of 
this additional term are diminished as the mesh is refined. 
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3. 

3.1. 

The three-dimensional existence theorem, the two-dimensional uniqueness theorem and the 
above note all illustrate the greater flexibility available to the cell vertex method in three 
dimensions. The existence of a one-parameter family of second-order methods in three 
dimensions suggests the possibility of optimizing the spectral properties in order to improve 
the convergence of iterative methods. 

Fourier Analysis 

In order to examine the spectral properties of these stencils in more detail, a straightforward 
Fourier analysis is presented for a uniform mesh. A Fourier symbol S ( 8 )  is sought such that 

8 

C aiq(xi) = S(8) q ( X 0  ), (31) 
i = l  

with q defined by 

q(x) = exp( t ( 8 .  x)) (32) 

and 8=(01, t12, 8 3 ) T ~ ( - n ,  nI3. Substituting (32) in (31) and using p=O, 

) 1 (-e1-:2+e3 
+ 2ia3 sin e1-e2-e3 -e1+e2-e3 

2 s(e) = 2ial sin ( ) + 2ia2 sin ( 
-el -e2-e3 + 2iu4 sin (33) 

The zeros of S ( 6 )  represent modes which the discretization cannot detect. The corresponding 
functions q ( x )  model eigenfunctions of the discretization with small eigenvalues. They are thus 
a crucial indication of the likely performance of iterative solvers. Firstly, the high-frequency 
modes on the sides of the Fourier cube are examined. For el = n equation (33) becomes 

S(8) =i[ ( i -44)  cos ( y) + (i+ 44) cos (?)I. 
If O2 = n then 

S ( 8 )  = 8i4 sin (2). 
(34) 

(35) 

Hence S(8)=0 for 8=(n, n, O)T. Similarly, there are additional zeros along every edge of the 
Fourier cube at the points 

8 = (n, n , O ) T ,  (77, 0, n ) T ,  (0, 71, n)T. (36) 
These are the modes represented in equation (28). For 4 = 0 the symbol also vanishes along the 
edge 8= (n, n, $)' for all $ E (- n, n] and in general for 

6= (n,n, $IT5 (n, $, ($, 71, XIT (37) 
for all $ E (- n, n]. These modes correspond to those of equation (29). It is easy to show from (34) 
that S ( 8 )  is non-zero at the modes 

8 = ( 5 n, 0, olT, (0, 5 n, OK (o,o, f (38) 
if all components of a are non-zero. 
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Finally, consider the symbol in the neighbourhood of the origin. The consistency condition 
S(0) = 0 holds. Furthermore, for small 8 the approximation sin ( O i )  % Oi leads to 

Hence the symbol vanishes for small 8 orthogonal to a. This result represents a physical 
characteristic mode illustrating that low-frequency error is not propagated orthogonally to 
streamlines. A similar result is true in two  dimension^.^ Away from the origin these characteristic 
zeroes of S deviate to coalesce with the modes (36H38) as illustrated by the following figures. 

Three-dimensional representations of the Fourier symbol S(8) for the discretisations in Figures 
4 and 5 are illustrated in Figure 8. These are grey-shaded contour plots of S projected onto slices 

(b) 
Figure 8. A three-dimensional representation of the Fourier symbol S(B)-the dark areas represent a small symbol: 

(a) triangulated faces, as in Figure 5; (b) non-triangulated faces, as in Figure 4; a=( l ,  2, 3)T 
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of the cube [ - n, nI3. The dark regions show where the symbol vanishes. The point zeros on the 
exterior, given by equation (36), and the characteristic central zeros, given in equation (38), of the 
Fourier cube are clearly illustrated for both discretizations. The symbol of the triangulated 
discretization, Figure 8(a), only vanishes over a single surface connecting the central and exterior 
zeros. It is immediately apparent that the nontriangulated symbol, Figure 8(b), also vanishes over 
all edges of the Fourier cube represented by equation (37). This means that the non-triangulated 
scheme has an extra dimension of high-frequency Fourier modes which are undetected by the 
stencil. The convergence of iterative solvers is well known to be severely inhibited by the existence 
of high-frequency zeros within the Fourier symb01.~ 

4. NUMERICAL 'RESULTS 

4.1. Constant flow field 

This section investigates the achieved global order of accuracy of the two cell vertex dis- 
cretizations discussed above. These will be referred to as the planar method (see Figure 2 and 
equation (14)) and the triangulated method (see Figure 3 and equation (1 5)). These discretizations 
are tested on stretched, skewed, randomly distorted meshes. The first test problem is, as for the 
theorem, linear advection with constant coefficients, 

a-Vq=O,  

where a=(a ,  b, c)' is fixed. The general solution is 

= Q(u, v), 
where 

u = c x  - az, v = c y  - bz 

for some arbitrary differentiable function Q. For the purpose of this study the function 

Q(u, v )  = sin(nu) sin (nu) (39) 

was chosen with a = (+,#, 
convergence could be achieved on relatively coarse meshes. 

This smooth function was chosen in order that asymptotic rates of 

Grids were generated by distorting a uniform mesh on a unit cube given by 

Xi , j ,k=( i - l )h ,  Y i , j , k = ( j - l ) h  and Zi , j ,k=(k- l )h ,  i , j , k = l , .  . . , N ,  

where h = l / ( N -  1) for some mesh size N .  In order to demonstrate where the second-order 
accuracy of the methods breaks down, each interior point was randomly perturbed within a ball 
of radius h / 2  

4 
200 ~ ~ , ~ , + : = x ~ , j , k + j ~ - h ,  i = 2 , .  . . , N - 1 ,  j , k = l , .  . . , N ,  

for some x E [0, 1001 and random number r]  E [ - 1 , 1 ] .  The parameter r]  represents a percentage of 
random perturbation. For q > 100 mesh overlap would be possible. To model the types of meshes 
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essential for advection-diffusion and Navier-Stokes computations, the mesh was stretched using 
the function 

x i . j , k : = w ( X i ,  j , k ,  P), . ~ i , j , k : = w ( ~ ’ i , j , k ,  p) and ~ i , j , k : = w ( z i , j , k ,  p), i, j ,  k =  1, . . . , N ,  

for some given p. Hence for p >O all the point are stretched towards the faces x = 1, y = 1 and z = 1 
of the unit cube. Finally, to test the results of the theorem regarding skewed control volumes, the 
stretched randomized mesh was mapped onto a general parallelepiped in a similar fashion to 
Figure 7 by 

x i ,  j ,  k: = x i ,  j ,  k + 2 r z i ,  j ,  k + 2 t y i ,  j ,  k ,  y i ,  j ,  k : = Y i ,  j ,  k -k 2 s z i ,  j ,  k and z i ,  j , k :  = Z i ,  j ,  k, i,j, k =  1,. . . , N ,  

for some r,  s and t. Hence, by using the parameters p, 4 and r, s, t ,  a uniform mesh on a cube can be 
severely distorted. An example of such a mesh is given in Figure 9. 

Throughout these results a was fixed at ($,$, l)T. To ensure that the numerical domain of 
dependence lay within the analytical domain of dependence, (r,  s, t )  was chosen to be (-4, -t, t). 
Using the analytical solution given by equation (39), Dirichlet boundary data were specified on 
the mesh planes i =  1, j =  1 and k =  1.  Hence the test problem is to advect the sine function along 
the vector (+,$, l)T. 

The cell vertex method leads to a system of cell-based 
unknowns. For this test problem there are N 3  unknowns 

equations in terms of node-based 
q i , j , k ,  i, j, k=l, . . . , N .  There are 

Figure 9. An example of randomly perturbed, stretched, skewed (20 x 20 x 20) mesh with r =20%, p = 5 and 
(r,  s, t)=(t, 0,O) 
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( N -  1)3 cell-based residual equations and three planes of Dirichlet data, giving 
3 ( N -  1)2 + 3 ( N  - 1)+ 1 = N 3  equations in N 3  unknowns. Thus the counting is correct. As will be 
seen later, it is not always obvious that the numbers of unknowns and equations are equal. For 
more details of the counting difficulties associated with cell vertex systems and how they may be 
overcome see References 9 and 10. 

Ordering the unknowns qi, j ,  k w q(xi, j ,  k )  lexicographically, a lower triangular matrix may be 
obtained. For this linear test problem this matrix may be simply inverted by one Gauss-Seidel 
iteration, which is equivalent to forward substitution. 

To illustrate the order of accuracy achieved, the global error is assumed to be of the form 

11 error 11 = c ( - 1)1+ higher-order terms 

for some constant c and order of accuracy p .  Ignoring higher-order terms, 

log( 11 error 11 ) = p log ( - N :  c. 

Hence with the analytical solution (39) available, by plotting log ( 1 1  error 1 1 )  against log[l/N - l)], 
the achieved asymptotic order of accuracy of a method is given by the gradient of the curve. The 
root mean square norm was used to measure the error. 

Figure 10 compares the planar and triangulated discretizations for successively stretched 
meshes, with the lowest curve representing p = O ,  the next highest p = 2 . 5 ,  then p=5 .  As an 
indication of the severity of the stretching in the case p = 5  the maximum ratio of volumes on 
a given mesh is lo6. It is clear that all the curves demonstrate global second-order accuracy in 
accordance with the theory. It is worth noting that for the non-stretched case p = O  a greater total 
accuracy is achieved by the planar method than by the triangulated method. This advantage is 
lost as the mesh is stretched. For the case p =  5 the two methods give identical curves. 
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Figure 10. Convergence of (a) planar and (b) triangulated methods on successively stretched parallelepiped meshes; 
( r , s , t ) = ( - i ,  - i , $ ) , p = O , 2 . 5 , 5  
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Figure 11 compares the two discretizations for successively randomized meshes. The lowest 
curve represents the case q =O%, with the higher curves illustrating increments of q by 10% until 
no convergence can be observed. The triangulated method maintains second-order accuracy up 
to y~ = 30% whereas the planar method breaks down at q = 10%. The triangulated method is thus 
clearly superior on random meshes. The original motivation for triangulating the control 
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Figure 11.  Convergence of (a) planar and (b) triangulated methods on successively randomized meshes; 
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volumes was to enhance the integration rule over non-planar faces, as is the case with these 
random meshes. It is therefore not surprising that the triangulated discretization is significantly 
more accurate than the planar method. Figure 12 reinforces this point by performing the same 
experiment as Figure 11 but with a stretching parameter p = 5. Even for a mesh similar to Figure 
9 the triangulated method shows signs of convergence where the planar method does not. 

The method of Figure 6 was also tested on uniform meshes. This method is not a member of the 
one-parameter family and therefore has a first-order truncation error. Numerical experiments 
exhibited first-order global accuracy. No supraconvergence was observed, as is sometimes the 
case with conservative finite volume schemes. 

The theory suggests that there are many other triangulated discretizations which have a 
second-order truncation error. The one given in Figure 3 was chosen because for the case where 
the components of a have the same sign, as in these experiments, this is the triangulation which 
maximizes the coefficient of the most upwind point. Hence the most favourable method was 
chosen, giving the most diagonally dominant and thus stable matrix. However, the accuracy of 
this method is dependent on the flow direction, which is not the case for the planar method. The 
least favourable method exhibits second-order convergence only on uniform meshes. This is 
thought to be due to loss of stability. A triangulation independent of the flow direction may be 
obtained by triangulating each face twice and averaging. On meshes with planar faces this is 
equivalent to the planar method, but the schemes are distinct on random meshes. Figure 13 
illustrates that this method gives little significant improvement over the planar method on 
random meshes. 

4.2. Variable JIow fields 

In the case of a constant flow field a, Theorem 2 states that a second-order truncation error can 
only be obtained on parallelepipeds if opposite coefficients of the stencil sum to zero. In terms of 
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triangulation schemes this means that opposite faces of a hexahedral control volume must be 
triangulated in the same manner. Conservation further requires that a given face is triangulated in 
the same direction in adjacent control volumes. Taken together, these constraints imply that all 
control volumes are triangulated identically throughout the mesh. This represents a major 
restriction on the choice of method. 

For a general flow field these constraints could lead to a non-optimal triangulation in 
particular regions of the domain. As observed in Section 4.1, a method which is not triangulated 
in order to maximize diagonal dominance will not achieve second-order convergence on non- 
uniform meshes. For variable a it is important that a method satisfies the conservation con- 
straint. However, it is not necessarily true that opposite coefficients should sum to zero, since 
Theorem 2 does not apply to variable a. I 

This is illustrated by the following variable coefficient linear advection problem: 
.. 

dq,  + bq, + c*q, = 0, 
6 =(a, 6, t)T = [U - O(CY - hz), b + W(CX - U Z ) ,  c ] ~ ,  

with true solution 

( c ~ - a z ) ~ + ( c y - b z ) ~ , o z - t a n - '  

for some arbitrary differentiable function Q. The problem is solved within a parallelepiped 
derived by shearing the cube (x, y, z )  E [ - 1 , 1 1 2  x [0,2] along the vector a = (a, b, c)' as shown in 
Figure 14. Each characteristic is a sheared helix of fixed radius and axis a. The axis itself is also 
a characteristic. A solution prescribed on the plane z=O rotates about a with angular velocity 
o as z increases. The solution on the upper plane z = 2 is therefore a rotation of the solution 
prescribed z = 0. A qualitative measure of accuracy may therefore be obtained by plotting the 
approximate solution on these two planes (see Figure 19). A quantitative measure of accuracy is 
obtained by calculating the error norm using (40). 

The triangulation adopted here maximizes the coefficient of the upwind node in each cell by 
evaluating a at the centre of the cell and triangulating all the upwind faces as for the optimal 
triangulation in the constant coefficient case. For the given test problem this recipe triangulates 
all interior faces without ambiguity and is thus conservative. Remaining boundary faces are 
triangulated in the same fashion as the opposite faces within the cell. The method is therefore 
conservative, but opposite stencil coefficients do not in general sum to zero. 

Figure 14. Helical test problem 
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Randomly perturbed, stretched, sheared meshes were generated as in Section 4.1, with the 
exception that a node was maintained at the centre of all xy-planes to model the characteristic a. 
Dirichlet boundary conditions were imposed on the plane z=O and on each xy-plane at nodes 
where the velocity field was strictly incoming. Figure 15 illustrates a typical xy-plane for 
a uniform mesh. The arrows represent the flow direction and boundary conditions are imposed at 
nodes denoted by dark squares. On an N x N x N mesh there are N 3  unknowns, ( N  - 1)3 cell 
residuals, N 2  boundary conditions on z = 0 and 2 ( N  - 1)’ inflow boundary conditions on the sides 
of the parallelepiped. Hence there are N - 1 fewer equations than unknowns. This counting 
difficulty is rectified by recognizing that the solution at the central node of each xy-plane is not an 
unknown but is constant along the characteristic a. Thus N - 1 extra characteristic boundary 
conditions are imposed at the nodes denoted by triangles in Figure 15. The resulting system of cell 

Figure 

E 
The associations of residuals to unknowns within an xy-plane of the helical test prc m. Dark squares denote 

inlet boundary conditions. The triangle denotes a characteristic condition 

Figure 16. 
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residuals and boundary conditons is thus wellposed and may be efficiently inverted using 
a Gauss-Seidel procedure ordered to follow the flow direction. 

For the same reason given in Section 4.1 Q was chosen as the smooth function 

Q(u, u) = exp { - [u cos(u) - i]’ - [u sin(u) +a]’}. 
Throughout these numerical results a was fixed at (3,2, l)T; since the mesh was sheared along a, 
this is equivalent to an (r ,  s, t )  of (3,2,0). The data given on the plane z = 0 were rotated through 
271, i.e. w = K .  

Figure 16 compares the convergence behaviour of the planar and upwind triangulated methods 
on stretched parallelepiped meshes. As for the constant coefficient test problem of Figure 10, both 
methods are clearly second-order-accurate. The planar method is superior on an unstretched 
mesh, but this superiority is lost for p = 5. Figure 17 shows the effect of randomizing the meshes. 
These results demonstrate the remarkable accuracy of the upwind triangulated method compared 
to the planar method on severely distorted grids. This effect is even more striking for this helical 
test problem than for the constant coefficient case of Figure 11. Whilst the upwind triangulated 
method can maintain an accurate solution up to 40% randomness, the planar method fails even 
for 20%. These results are further emphasized by Figure 18, which shows the convergence 
behaviour on successively randomized stretched grids. A qualitative illustration of the accuracy of 
the two methods is provided by Figure 19, which shows a contour plot of the solution on the 
plane z = 0 together with the approximate solutions obtained on the plane z = 2 by each method. 

5. CONCLUSIONS 

It has been shown that there is no unique generalization of the cell vertex method to three 
dimensions but rather a one-parameter family of methods, all of which have second-order 
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Figure 17. Convergence for the helical test problem of (a) planar and (b) upwind triangulated methods on successively 
randomized meshes; p=O, with q increasing from zero in increments of 10 
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Figure 18. Convergence for the helical test problem of (a) planar and (b) upwind triangulated methods on successively 
randomized stretched meshes; ,u=2.5, with q increasing from zero in increments of 10 

Figure 19. Contours of (a) Dirichlet data on the plane z=O, (b) the numerical representation of this after being rotated 
through 277 using the planar method and (c) using the upwind triangulated method; N=47, ,u=20% 
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truncation errors on parallelepiped control volumes. Finite volume discretizations with tri- 
angulated faces have been derived and recognized as members of this family. The greater 
flexibility available in three dimensions allows a method to be selected with advantageous 
spectral properties. Since these methods put greater bias on particular coefficients of the stencil, 
they may be interpreted as upwind schemes. Numerical experiments have shown that as well as 
having better spectral properties, upwind triangulated methods are also more accurate on 
distorted meshes than the more commonly used planar method. However, if the triangulation 
does not take account of the flow direction, an unstable method may result and second-order 
accuracy is not achieved. 

The flexibility available in triangulating control volumes has been demonstrated via the 
imposition of a variable coefficient helical flow field. For an upwind triangulation scheme, 
second-order global accuracy was observed up to a high degree of mesh distortion. This was not 
the case for the planar method. 

As in one and two dimensions, there exist compact and accurate cell vertex finite volume 
discretizations, which are thought to be ideal for systems of conservation laws. 
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